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1.0 INTRODUCTION

The magnetically insulated transmission line oscillator (MILO) is a microwave

device, potentially of gigawatt power, that combines the technologies of mag-

netically insulated electron flow and slow-wave tubes. This combination makes

the MILO a unique and robust device capable of operation over a wide range of

voltages.

MILOs are two-conductor systems comprised of a smooth inner conductor, the

cathode, and an outer conductor, the anode, that consists of periodically

spaced cavities. MILO operation is initiated by generating a large potential

difference, kilovolts to megavolts, across the anode-cathode (A-K) gap. The

large electric field associated with the voltage will cause a plasma to form

on the cathode surface. The plasma is a source of electrons that flow into

the A-K gap. The electron flow constitutes a current with an associated

magnetic field, the strength of which increases with applied voltage. For

sufficiently high voltage, the force associated with the self-generated

magnetic field is strong enough to bend electron trajectories such that they

are parallel to the anode. In this case, electrons are prevented from reach-

ing the anode, thereby allowing high-power operation without vacuum breakdown

associated with plasma generation by electrons impacting the anode. The

resulting equilibrium consists of electrons drifting parallel to the trans-

mission line axis in crossed electric and magnetic fields. This equilibrium

is short-lived because the drifting electrons excite, and subsequently inter-

act with, slow electromagnetic waves fundamental to the periodic A-K

system. In particular, slow transverse magnetic waves are amplified by this

process at the expense of electron energy.

Combining magnetically insulated flow and periodic structures for the pur-

pose of generating microwaves was apparently first suggested by Bekefi

(Ref. 1) in the mid-1970s, but was not extensively pursued. Increasing

interest in the high-power microwave sources, in combination with the

availability of adequate drivers, led to the rebirth of Bekefi's idea in the

form of the MILO in 1985.*
* This idea was first suggested by M.C. Clark. formerly of the Advanced

Technology Division, Air Force Weapons Laboratory, Kirtland AFB, NM, and now
with Sandia Natl Lab (SNL), Albuquerque, NM. The name MILO is attributed to
B. Marder of SNL.
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This report presents the first detailed theoretical analysis of the microwave

generating instability in MILO devices. The analysis is composed of a com-

bination of linear perturbation theory and numerical simulation using a two-

dimensional particle-in-cell computer code. The main theoretical result is

a dispersion relation that is used to predict frequency and growth rate of

the MILO instability.

Section 2.0 provides background concerning the physics of magnetic insulation.

space-charge waves, and slow-wave systems.

In Sec. 3.0, linear perturbation theory is applied to a set of coupled field-

fluid equations to derive a dispersion relation for electromagnetic and

space-charge modes allowed in a coaxial MILO device. In this case, we use

the standard technique of modeling the electron flow with an infinitesimally

thin annular beam because the resulting perturbed field equations can be

solved analytically. Although this constrains the resulting dispersion rela-

tion to a particular equilibrium, it is valid for general periodic geometries,

coaxial or not.

In Sec. 4.0, we numerically solve the thin-beam dispersion relation and investi-

gate its solution for a variety of geometrical and space-charge parameters.

The numerical solution shows that the MILO instability is a result of unstable

coupling between slow electromagnetic waves and space-charge waves. Numerical

simulation is used to confirm frequency predictions obtained with the disper-

sion relation.

Section 5.0 uses a more general approach to derive a dispersion relation. In

this case, linear perturbation theory is applied to a coupled set of field

and kinetic equations. Electrons are modeled with a two-dimensional distri-

bution function which corresponds to laminar, magnetically insulated flow

having finite thickness. Starting with Vlasov's equation, we derive an

expression for the perturbed distribution function. This is then used in

corresponding field equations to obtain a dispersion relation. This disper-

sion relation is a considerable improvement over the one obtained in Sec. 3.0,

because not only does it apply to general periodic waveforms, it also includes

the physics of magnetically insulated electron flow. Although the dispersion

2
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relation derived is restricted to laminar flow, this approach can be

generalized to nonlaminar equilibria, albeit with significantly increased

difficulty in numerically solving the resulting equations.

Section 6.0 investigates the numerical solution of the dispersion relation

containing the physics of magnetically insulated electron flow. Computa-

tional studies are performed that show the effect of changing parameters

associated with electron equilibria. We compare results with numerical

simulation and obtain excellent agreement.

Conclusions are presented in Sec. 7.0.

3
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2.0 BACKGROUND

This section reviews the basic physics that determines MILO behavior. Impor-

tant results from the theory of magnetically insulated transmission lines

(MITLs), space-charge waves, and periodic structures are presented as a pre-

requisite to understanding MILO operation. Some of these results will be

used later to analyze the stability of space-charge flow in the MILO. The

intent is not to present the complicated derivations, but to provide the

reader with enough background to comfortably follow the analysis in succeed-

ing sections. All topics discussed in this section have been thoroughly

discussed in the open literature and appropriate references are provided for

the person desiring more detailed infromation.

2.1 MAGNETICALLY INSULATED TRANSMISSION LINES

MITLs can be used to deliver considerable energy (megajoules) to a matched

load in vacuo. The phenomenon of self-insulation permits the maintenance

of large voltages (megavolts) on a transmission line for times longer than

attainable in ordinary vacuum gaps. The combination of magnetically insulated

flow and slow-wave tube physics is what makes the MILO a potentially high-

power microwave device.

For the purpose of discussion, consider coaxial transmission lines having

cylindrical symmetry. This is not an important restriction because the

basic physics is independent of the transmission line geometry.

Figure la depicts a segment of coaxial transmission line having inner radius

rc, outer radius ra, and length L. The inner and outer conductors will be

referred to as cathode and anode, respectively. The space defined by

rc s r < ra is called the A-K gap. The entire system is under vacuum. We

assume the line is long enough (ra-rc << L) so that end effects can be

neglected in the segment under consideration; however, note that the manner

in which the line is terminated has considerable influence on the equilibrium.

Space-charge flow in the gap is initiated by charging the cathode (for

example) to some potential (-V0 ) with respect to ground (the anode). When

4
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(c) RELATIVISTIC DRILLOUIN FLOW, (d) NON-LAMINAR INSULATED FLOW.

Figure 1. Types of electron flow in coaxial transmission lines.
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1VoI is above a material dependent threshold value, charged particles are

emitted off the cathode and flow toward the anode (Ref. 2). In the case of

field emission, the only one considered here, the large transverse electric

field at the cathode surface causes plasma formation from which electrons

(V0 > 0) or positive ions (V0 < 0) are emitted. We consider only the case

of electron emission.

Electrons flowing in the A-K gap considerably modify the field equilibrium.

The special case of space-charge-limited emission (Ref. 3) occurs when the

plasma density near the cathode is such that the surface value of the trans-

verse electric field is reduced to zero. At this point, the emitted electron

current density cannot increase and the transmission line is said to be space-

charge limited. Experimental evidence suggests that electron flow in MITLs

is space-charge limited (Ref. 4); hence, it is the only type of flow consid-

ered in this report.

Figure lb depicts the electron flow for sufficiently low voltage and electron

current. Electrons flow directly from cathode to anode. This type of flow

is known as Child-Langmuir flow (Ref. 3) and is characterized by a current

density that is proportional to JV0
3/2 . For higher voltages the electron

current increases and the associated magnetic field becomes strong enough to

bend trajectories toward the cathode. At a critical current Icr (typically

kiloamps), the self-magnetic field prevents electrons from reaching the anode

(Ref. 5). In this case, electrons are cut off from the anode and the trans-

mission line is said to be magnetically insulated. Electron cutoff is the

crux of magnetic insulation; it permits the sustenance of high voltage across

vacuum gaps by delaying breakdown due to plasma generation via electron bom-

bardment of the anode. Increasing the electron current above Icr will cause

the charge flow to be pinched closer to the cathode. In Figs. 1c and id, we

show two types of equilibria, out of many possible, corresponding to insulated

flow. The currents required to maintain these flow patterns are denoted lag

le, and Ic, for anode currcnt, electron current, and cathode current, respec-

tively. In each case, electrons drift parallel to the cathode, as a result

of crossed electric and magnetic fields, in a sheath that extends out to a

radius denoted re; however, the two equilibria are distinguished by different

6
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particle orbits. In Fig. Ic, the orbits are laminar; a special case of this

equilibrium is known as relativistic Brillouin flow (RBF) and is characterized

by all electrons having the same constant Hamiltonian and canonical momentum

(Ref. 6). Figure Id depicts the more general, and more probable, case of

cycloidal-type orbits. Theory shows that orbit type does not significantly

affect transmission line current (Ref. 5).

Many theories of varying degrees of complexity and using different particle

equilibria have been used to model MITL flow (Refs. 4, 6-8). Because of its

relative simplicity, RBF equilibrium is used to derive a dispersion relation

for the MILO. The following is an outline of results presented in Ref. 6.

As discussed above, electrons in RBF equilibrium drift parallel to the cathode

(along equipotential lines) in laminar orbits with a velocity determined by

crossed electric and magnetic fields. Figure 1c represents the configuration

under consideration. In the following analysis, the cathode is assumed to be

grounded and the anode has been charged to a voltage V0 > 0. Let (r) and

Az(r) respectively represent the equilibrium electric and magnetic potentials

in cylindrical coordinates (r, e. z). The corresponding fields are given by

Er = -d/dr and Be = -dAz/dr. Let H represent the Hamiltonian and Pz the

canonical momentum for electrons in this system. Then

Pz YMvZ- eAz (I)

and

H [M2C4 + c2(Pz + fAz)2]1/2 - ~(2)c / -I, 
2

where vz represents the r dependent drift velocity, c the speed of light, m

the electron mass, -e the electron charge, and y = 1/(i-v 2/c2 )1/2 . Because

the fields are time independent, H and Pz are constants of the motion. Using

boundary conditions 0(rc) = Az(rc) = 0 and conservation of energy, it is easy

to show, using Eqs. 1 and 2, that Pz = 0. Therefore

ymvz = 2A (3)
- cZ

7
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and

(y-1)mc2 = e¢ (4)

A differential equation for y(r) can be obtained by minimizing the action

integral

S =fdV L (d-, dAz
' dr r (5)

where dV represents a volume element and L the Lagrangian density of the fields.

The latter is given by

_db 2IdA\ 21
Ldr/-= (6)

The potentials are eliminated from Eq. 6 using Eqs. 3 and 4. Then, the action

integral is minimized if L satisfies the following Euler equation

d aL L 7)
dr ay' ay

where y' = dy/dr. Making the transformation = In[(r/rc)A] and per-

forming the necessary algebra gives the following equation for y

d2 NY 2(8)

where A is a constant to be evaluated below. The solution of Eq. 8 is

y = cosh(p) (9)

as is easily demonstrated by direct substitution. The following expressions

result from Eq. 9:

vz = C tanh(p) (10)

eo = mc2[cosh(p) - 1] (11)

8
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eAz  =mc
2sinh(p) (12)

E mc2 A sinh(p) (13)r e r

Be mc2 A cosh(p) (14)
e T

Note that on the cathode surface (p = 0) Er = 0; thus, RBF corresponds to

space-charge-limited emission. Furthermore, dividing Eq. 13 by Eq. 14

and comparing the result to Eq. 10, it is easy to see that the electron

drift velocity is completely determined by the equilibrium fields. Note

that the electron velocity is sheared, varying from 0 at the cathode to

some maximum at the sheath radius re. This is an important property of RBF

because it allows the MILO to operate over a wide range of voltages.

Using Eq. 13 for Er in the integral form of Gauss' law yields

n = MC2 tA2 cosh(p) (15)

for the electron density of the flow. The square of the corresponding

plasma frequency is given by

2- 47e 2n -- 2cosh(p) (16)

p m

and will represent space-charge effects in the MILO stability analysis.

Because the magnetic field is nonzero on the cathode, a current must flow

in this region. For a perfect conductor it will flow on the cathode sur-

face (boundary). By conservation of current, Ic, e, and la (defined above)

must satisfy the relation

Ia = Ic + Ie (17)

To derive an expression for la, we first use Ampere's law to obtain

Be = 21a/cr for the magnetic field in the region between the space charge

and anode. Then, we equate this expression with Eq. 14 at r = re and solve for

la, The result is

9
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la = AIYe (18)

where I = mc3/2e = 8.5 kA.

The cathode current is obtained simply by evaluating Eq. 14 at r rc and

noting that cosh(p c ) = 1. Thus,

Ic  = Al (19)

Using Eqs. 18 and 19 in Eq. 17 yields

Ie = AI (Ye - 1) (20)

for the space-charge current.

Expression 18 can be used to define the constant A because Ia and Ye are often

assumed to be known. Another useful expression for A is obtained by evalua-

ting Eq. 9 at r = re and solving for A. The result is

Inl(+Be

A 1-) (21)

wher 5e= - )r/

where Vze/C (Y 2- 1)/2/e Parameters having subscript e denote

variables evaluated at the edge of the charge sheath; for example, Ye = y(re)"

When re = ra, the flow is said to be saturated.

In terms of the above parameters, the transmission line current (Icr) neces-

sary to cut off electron flow to the anode is given by (Ref. 6)

cr -nrcc )  (22)

where the subscript a indicates a quantity evaluated at the anode. At this

critical current, electron trajectories are tangent to the anode.

10
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Upon examination of Eqs. 9-21, it is clear that knowledge of any pair of

parameters (Ye, re), (Be, re), (leg Ic), (leg Ia), or (Ic, Ia) completely

determines RBF equilibrium. The last pair (Ic, Ia ) can be determined

experimentally.

The above theory of RBF has been used successfully to predict total current

in MITL experiments (Ref. 6) with good agreement for voltages up to 1.4 MV.

2.2 SPACE-CHARGE WAVES

Consider a region of plasma (neutral or nonneutral) in equilibrium. If ions

are present, they are assumed to be stationary. When a region of plasma is

perturbed, associated electrons respond with oscillations at a frequency pro-

portional to wp, the plasma frequency defined in Eq. 16. Whether or not the

disturbance propagates depends critically on many factors, including the

electron velocity distribution, the temperature, and the presence of bound-

aries (Ref. 10). When a disturbance propagates, it is known as a space-charge

wave. Because they are manifest as a movement of mass, space-charge waves

cannot travel faster than the speed of light; hence, they are often called

slow waves.

To better understand space-charge waves, we examine the dispersion relation

for a simple problem. Consider a coaxial waveguide, shown in Fig. la, with

the space between electrodes filled with a uniform density electron beam

drifting with velocity k Vk and immersed in an infinite solenoidal magnetic

field. The infinite magnetic field precludes transverse electron motion;

therefore, only longitudinal disturbances are considered. The dispersion

relation for TMOm (transverse magnetic) modes (Er, Ez, Be # 0 and

Eel Br, Bz = 0) supported by this system is given in dimensionless form

(Ref. 9).

,2

(w-Bbk)2 (.2 - k 2 -q 2M) '0 W (2 -k' T 0 (23)

Yb

11
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hr/2= = W wrc/c, k- = korc, k0 is the mode

wave number, Wp = cprc/c, qom represents the mth zero of the expression

Jo(Z)Yo(xZ)-Jo(xZ)Yo(Z), and m represents the radial mode number. Here Jo

and YO respectively denote zero order Bessel's functions of the first and

second kind. Setting w' = 0 in Eq. 23 gives the classical dispersion rela-

tion for TMOm modes in a coaxial waveguide. The term in Eq. 23 containing

Wp represents the effect of space charge.

Figure 2 is a plot of a generic solution to Eq. 23. Solid lines represent

solutions. Broken lines indicate beam velocity and speed of light. The

light line separates fast and slow waves; that is, waves having phase velocity

greater than or less than the speed of light, respectively. Although there

are an infinite number of them, only the first (m = 1) electromagnetic mode

is shown. It asymptotically approaches the light line as k'+ -, but never

crosses it. Setting k- = 0 in Eq. 23 shows that the TMOm modes are cut off

(no longer propagate) at a frequency wc given by wc = (q +W 2 /Y)1/2 The

presence of electrons has increased the cutoff frequency of all modes. In

general, there are two space-charge waves associated with a monoenergetic beam

of electrons. In Fig. 2, these are represented by the solid lines straddling

the beam line. Although each mode has phase velocity less than c, they are

often referred to as fast and slow space-charge waves depending on whether

the associated phase velocity w,/k' is greater than or less than vb,

respectively.

The position of space-charge modes relative to the beam line, and their cor-

responding shape, is sensitive to electron density and velocity. For example,

changing vb changes the slope of the beam line and corresponding space-charge

modes.

More than two space-charge waves exist in electron flows having a nonuniform

velocity distribution (Ref. 10), of which RBF is an example. In particular,

such systems support a single fast space-charge wave and a continuum of slow

space-charge waves with phase velocities in the range v, < vph < vb where v,

represents the slowest electron velocity. Depending on the value of vl, a

single slow wave mode with vph < vI may exist. An upcoming section shows that

12
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Figure 2. Dispersion diagram for TMOn waves in a coaxial
transmission line containing a monoenergetic
electron beam.
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the MILO instability is a result of coupling between space-charge waves with

slow electromagnetic waves.

2.3 PERIODIC STRUCTURES AND SLOW ELECTROMAGNETIC WAVES

An important property of periodic structures is that they support slow electro-

magnetic waves; that is, the associated phase velocity is less than c. Thus,

slow waves can be amplified by coupling them to collective charge flows.

When the wave-phase velocity and charge-drift velocity are correctly matched,

wave amplification occurs at the expense of particle energy. This is the

method used to generate microwaves in devices such as magnetrons, traveling

wave tubes (TWT), and backward wave oscillators (BWO), for example (Refs. 11-13).

Because a MILO operates on the same principle, we will review some important

results concerning slow-wave propagation in periodic structures.

Figure 3 is a schematic of a hollow, cylindrical, periodic waveguide. The

waveguide wall is comprised of alternating vanes and slots having widths wv

and ws, respectively. The structure period (zO ) is given by z0 = wv + ws-

The inner wall radius is ri, and slots extend to a depth d, giving an outer

wall radius ro = ri + d.

A qualitative picture of the dispersion diagram for TMom modes in this struc-

ture can be obtained using Floquet's theorem (Ref. 13). Floquet's theorem

requires that field values at points separated by a structure period z0 can

differ only by a phase factor. Let F represent any field component associated

with a TMom wave propagating in the waveguide shown in Fig. 3. Then, accord-

ing to Floquet's theorem, F must have the form

F =-- Fn(r) exp[i(knz - wt)] (24)

where kn = k0 + nho, h0 = 27/z O , and k0 and w represent mode wave number and

frequency, respectively. The individual terms in Eq. 24 are sometimes

referred to as Hartree components (spatial harmonics) of the field.
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SLOW WAVE
STRUCTURE

VANE d
SLOT

I-,- I--I I, I--

r r

AXIS (r=o) I_,,

Figure 3. Schematic of a hollow, cylindrical, slow
waveguide.

The expansion in Eq. 24 represents a superposition of an infinite number of

standard waveguide modes, each shifted in wave number by an amount 2wn/z O .

The resulting system of forward and backward traveling harmonics determines

the character of all fundamental modes. Figure 4 represents the dispersion

diagram of TMOm waves supported by the structure shown in Fig. 3 with d/ri << 1

(Ref. 13). Broken lines represent shifted standard waveguide modes; that is,

those obtained without the corrugated wall. Solid lines are a superposition

of the latter, and represent modes that will propagate in the periodic

structure.

To electromagnetic waves, the periodic structure appears as a series of imped-

ance discontinuities with corresponding transmission and reflection coefficients.

The form of the dispersion diagram basically depends on the relative phase of

waves reflected or transmitted by these discontinuities. The latter determines

the upper and lower frequency cutoff for a mode. In particular, for shallow

slots a mode will be cut off when its wavelength is such that x1/2 = ws or

15
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A2/2 = ri. The first condition is realized when waves reflected by the slots

are 180 deg out of phase with incoming waves. By analogy with magnetron

theory, this mode is called the 7r-mode (Ref. 13). In this case, the electric

field changes phase by 180 deg from slot to slot. The second condition cor-

responds to the standard waveguide cutoff condition. In Fig. 4 these points,

exemplified by w, and w2, occur where dw/dk0 = 0, that is, where the corres-

ponding group velocity is zero.

Figure 4 is periodic with period ho, because the form of expansion in Eq. 24

is unchanged by the transformation k0  kO + mho .

An important feature of Fig. 4 is the presence of slow electromagnetic waves

(phase velocity less than c). Such modes can be amplified via an unstable

interaction with drifting charge flows. In the MILO these modes are amplified

via the unstable interaction with electrons in the magnetically insulated flow.

2.4 QUALITATIVE DESCRIPTION OF MILO OPERATION

Enough information is now available to put together a qualitative description

of how the MILO operates in the linear regime in which the field perturbations

are much weaker than the dc fields. Figure 5 is a superposition of Figs. ic

and 3, and represents a coaxial MILO in which the electron flow is laminar and

magnetically insulated (RBF). From the previous discussion, the dispersion

diagram for TMom modes is expected to consist of fast and slow electromagnetic

waves in addition to space-charge waves. Velocity shear associated with the

insulated flow will result in a continuum of slow space-charge waves having

phase velocities in the range 0 < vph < Ve, where the limits correspond to

the minimum and maximum electron velocities in the flow. When the phase

velocity of a TMOm mode lies in this range, an instability is expected to

occur. Electrons in this resonant layer always see a decelerating axial

electric field. Consequently, field energy increases at the expense of

particle energy.

17
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CORRUGATED ANODE (v=v )

ELECTRON FLOW Z r (

CATHODE (wi=0)

AXIS (r=o)

Figure 5. Schematic of a cylindrical MILO.
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In succeeding sections, MILO dispersion relations are derived for several

types of periodic structures and two different electron equilibria. Numerical

results indicate that the qualitative description given above is correct in

the linear regime.
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3.0 MILO DISPERSION RELATION FOR THIN BEAMS

To obtain a preliminary understanding of MILO physics, we derive a dispersion

relation for the simplest possible space-charge equilibrium. Assume that an

infinitesimally thin annular beam of electrons with radius re drifts with

velocity = Vzk parallel to and concentric with the center conductor of an

infinitely long, cylindrically symmetric, periodic, coaxial transmission line

(CTL). The cathode has constant radius rc. The anode is a continuous,

periodic structure with period z0 and radius ra(z). The entire configuration

is shown schematically in Fig. 6. In the figure, the parameter 0 represents

the angle between a tangent to the anode and the horizontal. It will be used

later in the derivation of a key boundary condition.

Modeling the corrugated anode with a continuous periodic function has several

advantages. Because we assume the anode is continuous with continuous first

derivative, the problem consists of solving Maxwell's equations in two regions,

one containing space charge and the other without. If we use the structure

shown in Fig. 3 (square-wave anode), three regions are required: two corres-

ponding to the space charge and vacuum in the A-K gap, and another for the

vacuum in the slot region. An exact mathematical treatment of the latter prob-

lem would be quite difficult because the necessary matching conditions at the

region interfaces are not easily implemented. Consequently, most analyses

involving square-wave anodes assume the slot depth is very deep compared to its

width (see Ref. 14,for example). This model ignores the slot Er field (in

cylindrical coordinates, for example) and precludes the existence of waves

other than transverse electromagnetic (TEM) in the slot region. Furthermore,

in cylindrical coordinates, analysis of coaxial structures with square-wave

anodes produces formulae having singularities that strictly limit applica-

bility. Therefore, to avoid these complications, we choose to model the cor-

rugated anode with a continuous function having continuous first derivative.

Because all electrons are assumed to drift in the z direction, an Ez field

component must be present for instability to occur. Hence, we consider only

TM waves for which Er, Ez, and Be are nonzero and Ee, Br, and Bz equal zero.

In addition, it is assumed that asymmetries giving rise to asymmetric modes
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Er EllI~ Z0  -. '

ELECTRON FLOW (Vz) ra(Z)

r CATHODE r

Figure 6. Model of MILO used in the linear theory.

do not exist; that is, quantities are independent of the azimuthal coordinate

e. Analogous to classicial waveguide theory, these waves are referred to as

TMOm modes, where m refers to the radial mode number; the important difference

is that periodic CTLs support slow electromagnetic waves.

The above space-charge equilibrium is not possible without the use of a strong

(infinite), externally applied, solenoidal magnetic field to guide electrons

through the CTL. The existence of such a field is assumed throughout the

analysis, and allows us to neglect transverse electron motion.

A thin monoenergetic beam of electrons is considerably different from the

magnetically insulated flow described in Section 2.1. Its use is justified

by the fact that in the linear regime a thin sheath of electrons nearest the

anode will interact strongest with the fundamental TM mode because it has a

radial maximum in this region. Furthermore, as long as the radial electro-

magnetic wavelength is much longer than the charge sheath thickness, the

latter will not be important. We expect this to be the case because, by

analogy with classical waveguide theory, the wavelength of the fundamental

mode will be approximately 2max(ra - rc).
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Implicit in the above discussion is the assumption that the electron equilib-

rium is unaffected by the presence of a periodic anode. This is certainly true

for very shallow slots (d < ws), and we assume it is approximately true for

deep slots (d > ws). In the case of deep slots, the dc electric field will

bend significantly near the slot entrances, creating an electric field com-

ponent parallel to the cathode in addition to the usual radial electric field.

The parallel field component perturbs the transmission line equilibrium, but

its magnitude decreases toward the cathode where it is zero. Thus, in the A-K

gap where electrons are confined, the total electric field is approximately

radial, and the electron motion is approximately laminar. This is confirmed

for RBF in Sec. 6.

The thin-beam approximation was used to derive a dispersion relation because

associated perturbed field equations have simple analytic solutions; and in

the limit of zero cathode radius and shallow slots, the theory can be vali-

dated with an existing theory of backward-wave oscillators (Ref. 11).

As is shown in Fig. 6, the electron flow divides the problem into two distinct

vacuum regions rc s r < re and re < r < ra(z). To derive a dispersion rela-

tion for this system, expand the fluid equations for electron flow and Maxwell's

equations for Er, Ez, and Be about the thin-beam equilibrium. All dependent

variables can be written in terms of the expansion coefficients of the per-

turbed Ez field. Solutions for the perturbed Ez are obtained in regions I and

II and matched at the space-charge interface. The boundary condition for the

tangential component of the perturbed total electric field at the anode will

lead to a dispersion relation.

Proceed by considering first the region containing space charge. Correspon-

ding equations for the vacuum regions are easily obtained by setting the elec-

tron plasma frequency equal to zero.

With the above assumptions, Maxwell's equations in cylindrical coordinates

(r, e, z) become

aEr aEz I aBe
z- (25)az ar c at
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aBe aEr1 3(26)
az c at

1a rB. = 471 j + I aEz
r ar c c at

where Jz represents the electron current density. The equations describing

the electron flow are

+ Vzz Pz ="eE(28)

z 2

an + L nv 0 (29)~t 5 z  0

where Pz = ymVz is the axial component of relativistic momentum,

= 1/(1-v2/c2) 1/2 , n the electron density, and a/3t + vz3/ z represents the
z

convective derivative (d/dt).

We now perturb the system about its equilibrium. Let F temporarily repre-

sent any one of the quantities Er9 Ez, Be, n, or v For small perturbations

we assume that F = F0 + F1 (F1 < F0 ) where 0 and 1 denote equilibrium and

perturbed quantities, respectively. The perturbation F1 is assumed to have

the form

FI Fn (r) exp[i(knz - wt)] (30)

where kn k0 + nh0 and h0 = 2ir/z0 (Floquet's theorem). The parameters k0
and w represent mode wave number and angular frequency respectively.

Substituting an expansion of the form just described for each of the dependent

variables in Eqs. 25-29 yields to first order in the perturbed quantities:

dEzn (31)

kErn - dr =i Ben

k B = E (32)
n en c rn
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1 d rBn_ 4'rJ i E(3

dr en c zn c zn

inzn = eEzr (34)

s nn - n0v znk = 0 (35)

where sn W - V zkn represents the velocity shifted frequency. To obtain

Eqs. 34 and 35, we have assumed that, because the structure under considera-

tion is infinitely long, all equilibrium quantities are independent of z.

The thin-beam current density is given by Jz = -env zn6(r-r e) where 6 is the

Dirac delta-function and n is a normalization constant determined by requiring
ra

-! 'el = 21Tf drrJ z . The parameter Ie represents total electron current. The

rc

integration is trivial and yields n = 1lel/(27reen0vz0 ). The nth component

of Jzj can now be written as

Jzn = -en(n 0v zn + n nvzO )6(r-re) (36)

The nth component of pZ1 is given by pzn = m(ynvzO + YOVzn). To obtain yn

expand y(v z ) in a Taylor series about vz0. To first order this yields

Y + Y 2 Y(vz0) + v ' I V
0 zo z v v v ZO

Because Y0 
= Y(vzo)' we identify the perturbed relativistic factor y, with

dy
z V vz  = v zO

Since dy/dv z = vzy
3/c2, we have Yn = v zOY 3 V /C2 and p my 3v Substi-zOn 0 zn zn 0 zn*

tuting the latter expression for pzn into Eq. 34 yields

eE
vzn -i zn (37)
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Solving Eq. 35 for nn yields

n nknvzn (38)

Substituting Eqs. 37 and 38 into Eq. 36 yields

ne2no Ezn ) (39)Jzn = in7 T (-e

Using Eq. 32 to eliminate Ben in Eq. 31 and solving for E rn yields

kn dEznrn =  -Y Z
rn

where r2 2/C2 - k2 . Using Eq. 32 to eliminate E in Eq. 40 yields

n n rn
/cdEn

B i n d (41)

An equation for Ezn is obtained by substituting Eqs. 39 and 41 for Jzn

and Ben, respectively, into Eq. 33. The substitution yields

r n)En 2 T En2 6(r-re (42)
rdr r Tr + ,n zn = ire  2 Ezn 6(- (Id d 2e)-' Z E(2

n

where a = ll e/(y2!A), IA mC3yO6zo/e, and B = /C. IA represents

the Alfven current (Ref. 15) and is equal to 17.1Yoszo kA. The Alfven limit

is the maximum amount of current that can be transported in a beam of electrons.

The parameter a governs the effect that space charge has on the dispersion

relation.

Setting a = 0 in Eq. 42 yields the following equation for Ezn in each of the

vacuum regions.

rf. + r En 0 (43)

Relations 40 and 41 for E rn and Ben remain valid in the vacuum regions because

they are independent of space-charge parameters.
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We now use Eqs. 40-43 and appropriate boundary conditions to obtain a dis-

persion relation for TMOm waves supported by the system shown in Fig. 6.

Equation 43 is Bessel's equation (Ref. 16) of order zero. The most general

vacuum solution is

E zn(r) = An J o(rn r) + B Y (rn r) (44)

where J and Y0 represent zeroth order Bessel functions of the ist and 2nd

kind, respectively. Because the origin is excluded from region I, Eq. 44

applies to both vacuum regions, albeit with different coefficients. The

latter are determined using boundary and matching conditions for the total

axial field EZ1.

At the cathode we have E Z1(rc) = 0 for all z. Because the exponential func-

tions in Eq. 30 expansion are linearly independent, we must have E zn = 0;

that is, the coefficients must vanish independently. Applied to the region

I solution, this requires that BI Y (r r -A1J (r r ) or
n 0nc nO0 n c

E In(r) = An[Y (rnrc)Jo(rnr)]- Jo(rnrc)Y(rnr) (45)
zn n 0 n c 0 n 0 n c n

In Eq. 45, we have renormalized AI such that AI = Y (r r )A*. Expression
n n 0 nc n

44 with superscript II will be used for the solution in region II.

The coefficients AI| and B can be solved for in terms of A by matching then n n
vacuum solutions at r = re. A valid solution must be continuous across the

space-charge interface. Thus, we require

I I|

E I(re) = E (re) (46)
zn e zn e

To obtain a second condition, multiply Eq. 42 by rdr and integrate from re-

to re + c with e/re << 1. The result is

r e+ re+E

d re 2 2a n~z Ezn I + r dr rEzn _T 2 E zn ( e (47)

re- n
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Letting e go to zero in Eq. 47 yields

2 2dEzn dEin _2 rn I
dr n - r rre 2 zn(re)

er=r e e

where we have used the fact that Ezn is continuous, E zn(re+E) = Ezn, and

E (r -c) = Ezn
zn e zn'

Substituting the solutions in Eqs. 44 and 45 for Ez' and E into Eqs. 46 and
zn zn

48 yields

An1 J (rre) +BY (rr) = FnA (49)
n 0 n e n 0 n e n n

and
2 2

AIIJ (rnre) + B11 Y (r re) = nF A (50)
n 1 ne n 1 ne n n

where

Fn = Yo(r r )J (rnre) - J (r nr)Y o(rnre)

and

Gn = Y0(rnrc)Ji(rnre) - Jo0(rnrc)Y 1 (r nre)

Solving Eqs. 49 and 50 for AII and B'' yieldsn n yed

AI n~c2 Fn~~ne An  (51)
n = [O(rnrc) - - nY ne

n

and

2 2BI I : jo(  + rnC.
Bn r c ) + --T- FnJo(rnr A (52)
n0 n
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We have simplified the expressions for A and B II by using the Wronskiann n
identity (Ref. 17) J (rn r e)Y (r) - J O(r re )Y 1(n r e ) = 2/7rnre

Using Eqs. 30, 44, 51 and 52, the solution for the total perturbed axial field

in region II [re <r < ra(z)] is given by

E11 (rzt) A*IY(rnrc)Jo(rnr) - Jo(rnrc)Yo(rnr)

ZIC n [yo nr JnrYonr

-n [ (r r r) -- r0
-CL n 2F[orn e On O)-J rn re rnr
Qn

x exp[i(knz - wt)] (53)

Similar expressions can be obtained for Er Bu

Eqs. 30, 40, 41, 44, 51 and 52, but they are not needed for the remaining

analysis.

Application of the electric field boundary condition at the anode wall leads

to a dispersion relation. The component of the total field tangent to the

anode surface must be zero for all z. In terms of the angle 0 defined above,

the boundary condition at the anode wall can be written as

Ez[r a(z),z,t]cos(O) + Erl[ra(z),z,t]sin(O) = 0 (54)

Equation 54 is a crude form of the dispersion relation; however, it has the

undesirable feature of explicit z dependence. Following Ref. 18, we convert

Eq. 54 into an infinite system of homogeneous equations, and simultaneously

eliminate z by multiplying by exp(-imh0 z) and integrating from -z0/2 to zC/ 2 .

Dividing Eq. 54 by cos (0), we note that tan(O) = dra(z)/dz. Substituting

general expressions for ElI and El! (using Eqs. 30 and 40) into the resultinq
zI ri

equation, multiplying by exp(-imh0 z), and integrating from -zo/2 to zo/2 yields
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z0/2J dz E zn a

Z 0 /2

kn dr (z) dE II
_ drZ dzn exp[i(n-m)hoz] = 0 (55)+ i -r dz dr rr()

rn rcr a(z)

where the term exp~i(koz - wt)] was factored out before the integration.

Equation 55 can be simplified by noting that

dr (z) dE 1  _

dra drzn = zz)] (56)

dz dr rra(z) dz zn Z(

Using Eq. 56, integrate the second term in Eq. 55 by parts to get

Zo/2 I
0 dra(z) dEz

dz dz dr ( exp[i(n-m)h0 Z]

-Z012 r=ra(z)

1 o/2 ( [

[ (z)]exp[i(n-m)h0z z o/2-Zo/2

zo/2

" i(n-m)hO[ dz E1[ra(z)]exp[i(n-m)hoZ]  (57)

Note that, because ra(z) is periodic with period zo, the first term on the

right-hand side of the second equal sign in Eq. 57 is zero. Substituting

the result of Eq. 57 into Eq. 55 yields
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1Zo/2

+ zn a

EIIr,
Using Eq. 53 to obtain E [r (z)] and substituting the result into Eq. 58

zn a
yields an infinite system of homogeneous equations of the form

AD mn(w,k) = 0 (59)

We define the integral Imn (x) such that

Zo/2

Imn(x) = dz{Yo(rnX)Jo[rnra(z)]
-Z0/2

- jO(rnX)Yo[rnra(z)]}exp[i(n-m)hoz] (60)

The matrix elements Dmn (w,K0 ) are then given by

Dmn (,ko) = [r2 + hokn(n-m)] [Imn (rc) - aC2 r2Fnmn (re)] (61)

* * =AF hsaod

To obtain Eq. 61, we renormalized An such that An = A rnQn. This avoids

the possibility of singularities occurring in upcoming numerical work.

A dispersion relation for the configuration shown in Fig. 6 is obtained

by requiring the existence of nontrivial solutions to the homogeneous sys-

tem, Eq. 59. This is assured by setting the determinant of the coefficient

matrix equal to zero. Thus, the desired dispersion relation is given by

det[D(w,k0 )] = 0 (62)

For a given k,, Eq. 62 determines the frequencies of all allowed transverse

magnetic modes and space-charge waves supported by the system shown in

30



AFWL-TR-88-103

Fig. 6. The dispersion relation applies to any structure than can be modeled

with a continuous periodic function having a continuous first derivative.

The case n=O in the above equations corresponds to ordinary waveguide analysis.

In general, Eqs. 58 and 62 must be solved numerically because the Dmn are

too complicated. The next section shows that accurate numerical solutions

to Eq. 62 can be obtained for relatively small values of m and n.
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4.0 NUMERICAL SOLUTION OF THE THIN BEAM DISPERSION RELATION

In this section, we investigate the numerical solution of Eq. 62 with coef-

ficients in Eq. 61 for a variety of periodic transmission line geomctries

and space-charge parameters. For this purpose, a computer code called

DISCODE was written to numerically calculate oscillation frequency and growth

rate (for problems with space charge) associated with TM On modes supported

in a given MILO structure.

The discussion is in two parts. Part 4.1 concerns the numerical solution

of the analytic dispersion equation for the purpose of obtaining a prelimi-

nary understanding of MILO physics. Part 4.2 presents results from two-

dimensional (2-0) particle simulations of the MILO for the purpose of making

direct comparisons with, and establishing the validity of, the analytic

theory.

4.1 NUMERICAL SOLUTION OF EQUATION 62

DISCODE is used to obtain dispersion diagrams for a coaxial MILO whose

periodic anode varies sinusoidally in the axial direction (see Eq. A-1 and

Fig. A-i). The results are separated into groups with and without space

charge. In the latter case, electromagnetic modes can be investigated

without complications arising from the presence of space charge. Furthermore,

the electromagnetic part of the code can be validated by making direct com-

parisons with previous work involving hollow backward wave oscillators having

shallow slots. For cases that include space charge, the dispersion relation

solution consists of interacting electromagnetic and space-charge modes, and

reveals the nature of the MILO instability.

4.1.1 DISCODE Algorithm

Given a wave number ko, DISCODE evaluates the matrix elements Dmn(w, k0 ),

computes the associated determinant, and iteratively calculates th- complex

roots i (i=1,2,3,...) of Eq. 62. The wi are calculated with a routine

called CROOT (Ref. 19). CROOT uses Muller's method (Ref. 20), which is
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based on Newton-Raphson iteration (Ref. 21), and can be used to find the

roots of any equation in the form of Eq. 62.

Clearly, for numerical work, the series in Eq. 59 must be truncated at some

finite value Inj = N. The matrix D(w, k0 ) is then 2N+1 by 2N+1, with indices

m and n ranging from -N to N in increments of 1. The value of N depends on

the slot depth and width. The number of significant space harmonics contained

in a slot increases with its size; therefore, N must increase in proportion

to slot size. To obtain accurate numerical solutions, N was varied until the

variation in wi was less than one percent. This accuracy was achieved with

values of N in the range 2 < N < 4 for the structures considered.

4.1.2 Numerical Solution Without Space Charge

Dispersion curves for TM On modes in the absence of space charge can easily

be obtained from DISCODE by eliminating electron current and velocity from

the dispersion equation. This is accomplished by setting a = 0 and v zo = 0

in Eq. 61. Without space charge, there is no instability; hence, the roots

of Eq. 62 are real.

The first case we consider is that of a hollow, sinusoidally rippled wave-

guide. A benchmark exists for this geometry (Ref. 11) and we use it to

validate DISCODE. The center conductor is removed from the coaxial dis-

persion equation by replacing YO(rnx) with 1 and J (r nx) with 0 in Eq. 60.

This substitution will not yield correct results when 0 # 0; in this case

Imn (rc) and Fn in Eq. 61 must be modified.

Figure 7 represents the numerical solution of Eq. 62 for a hollow rippled

waveguide with parameters r0 = 1.3 cm, c = 0.077, d = 0.2 cm, and z0 = 1.1 cm.

In this and succeeding examples, frequency and wavelength are normalized by

r0/c and ro, respectively. Shown in Fig. 7 are the first four electromag-

netic modes (TM0 1 - TM04) and the light line (straight line with slope one).

The light line separates regions of fast and slow waves. The dispersion

diagram is consistent with Fig. 4 and associated discussion. Furthermore,

Fig. 7 is identical to Fig. 3 of Ref. 11. Therefore, the numerical
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Figure 7. Dispersion diagram for TMOn waves in a

hollow, cylindrical, rippled waveguide.
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solutions obtained with DISCODE should be accurate. Cases including space

charge are validated below.

We now return to the case of coaxial geometry. Figure 8 represents the

numerical solution of Eq. 62 for a coaxial MILO having inner conductor radius

rc = 0.3 cm, r0 
= 1.3 cm, e = 0.077, d = 0.2 cm, and z0 = 1.1 cm. As required

by theory, the dispersion diagram is clearly periodic with period

P = h0r0 = 7.4; that is, the normalized structure wave number. Unlike the

previous example, the lowest order mode (TM01 ) lies entirely on the slow-wave

part of the diagram and includes zero frequency. This is characteristic of

two conductor problems in which one conductor is rippled (corrugated) and

can be understood in the following way. Suppose a zero frequency (dc)

potential is applied across the gap in this system. Associated electric field

lines must bend in the vicinity of the rippled anode such that they termi-

nate normal to the conducting surface. Therefore, to satisfy boundary con-

ditions, a static electric field in a periodic coaxial transmission line

must have radial and axial components.

Figure 8 contains a series of passbands in which the frequency of propagating

waves varies continuously with wave number. This is a result of using a

nonreentrant geometry; that is, one that does not close in on itself.

Electromagnetic fields in reentrant devices, such as the classical magnetron,

are subject to closure conditions which lead to discrete modes. These modes

are often characterized by the slot-to-slot phase difference of the dominant

electric field component. For example, 7-mode indicates a slot-to-slot

field variation of ff (180 deg).

Despite the fact that MILO modes are not discrete, it is often convenient to

categorize them in terms of the slot-to-slot phase difference of the asso-

ciated axial electric field. For example, in Fig. 8 the 7r-mode corresponds

to k0r0 = P/2 = 3.7. At this point the wave group velocity (dw/dk0 ) is

zero. Therefore, axial energy transport does not occur and the mode is said

to be cut off.
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The TM01 mode in Fig. 8 has the lowest cutoff frequency. By analogy with

classical waveguide theory, this mode is expected to be dominant.

To verify the effect of changing structure period, we solve the dispersion

equations for the previous geometry with the structure period increased by a

factor of 2, now z0 = 2.2 cm. In this case the dispersion diagram period

should be 3.7. Figure 9 confirms this. In addition, note that the frequency

of the TM01 -mode is a factor of 2 less than in Fig. 8. This behavior is

expected because, as discussed in Sec. 2.3, the upper frequency cutoff condi-

tion corresponds to half a free-space wavelength in a slot period when the

slot depth is less than the slot width. In this case, the TM0 1 high-frequency

cutoff is inversely proportional to structure period.

When the anode slots are deeper than their width, the high-frequency cutoff

of the dominant mode is determined by the slot depth. Figure 10 is the dis-

persion diagram for the case in which rc = 0.3 cm, r0 = 1.8 cm, e = 0.333,

d = 1.2 cm, z0 = 1.1 cm, and h0r0 = 10.3. A qualitative comparison with Fig. 8

(note that r0 is different) shows the TM01 mode to be considerably flattened

as a result of increasing the slot depth. The flattening of the TM01 mode

becomes more pronounced as the slot depth increases. For very deep slots,

think of a slot as a short-circuited transmission line in which a transverse

electromagnetic (TEM) wave propagates. Because the electric field is maximum

at the open end and zero at the closed end, the cutoff frequency corresponds

to a quarter of a free-space wavelength in a slot. In any case, mode fre-

quency decreases with increasing slot depth.

Having established the spectrum of TMOn modes associated with the MILO in the

absence of space charge, we now investigate how space charge modifies the dis-

persion relation solution.

4.1.3 Numerical Solution Including Space Charge

Before proceeding to the most general case of space charge flow in the rippled,

coaxial guide, consider another benchmark problem.
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Figure 10. Dispersion diagram for TM On waves in

a coaxial rippled waveguide showing

sensitivity to slot depth.
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With n = 0 and E = 0, the MILO dispersion equations should produce solutions

corresponding to an ordinary (smooth) coaxial waveguide containing electrons

drifting with velocity vzO. In this case, as pointed out in Sec. 2.2, the

dispersion relation is expected to consist of fast electromagnetic modes and

two space-charge waves.

Figure 11 represents the solution of Eq. 62 with n = 0, c = 0.0, rc = 0.3 cm,

ra = r0 = 2.4 cm, re = 1/4 cm, Ie = 1.0 kA, 8e = 0.5, and ye = 1.155. Com-

parison with Fig. 2 clearly shows that the dispersion diagram is exactly as

expected. Therefore, the MILO dispersion equations are expected to yield

accurate solutions when the periodic anode is included, a case already vali-

dated in the absence of space charge.

Figures 12 and 13 show how the smooth coaxial line dispersion diagram is

modified by increasing electron current and velocity, respectively. In

both cases Ie = -3.0 kA. Figure 13 corresponds to ae = 0.85 and ye = 1.91.

Remaining parameters are the same as above.

Comparing Fig. 12 with Fig. 11 shows that the increased current (plasma

frequency) has caused the TM01 mode to shift upward in frequency, and

resulted in further separation of the space-charge waves. We expect this

behavior because, as the electron density increases indefinitely, the space-

charge sheath looks more like a conductor to the fields; therefore, for very

large density, the electron annulus in effect becomes the outer conductor

of a coaxial line. In this case, slow waves do not exist and the fast-wave

frequencies readjust to the different outer conductor radius.

Comparing Fig. 13 with Fig. 12 indicates that the space-charge wave phase

velocity (v sc) is strongly dependent on electron drift velocity. Forhigly sc3/2
highly relativistic electrons, it can be shown that v sc VZO(1±w /wy0  ),
where w WY 3/2 << 1 (Ref. 23). Figure 13 is consistent with this p

p 0
relationship.

The preceding results give an indication of what the dispersion diagram

will look like for the general MILO problem, space charge drifting in a
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Figure 11. Dispersion diagram for TM waves in

a smooth, coaxial transmission line

containing an annular, monoenergetic

electron beam.
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coaxial, periodic transmission line. In this case, the dispersion diagram is

expected to resemble a superposition of Figs. 10 and 11; that is, it will

consist of fast and slow TM On modes and space-charge waves. Instability can

occur where slow TM On waves intersect space-charge modes, because at this

point they have equal phase velocities. Therefore, in general, the roots of

Eq. 62 are composed of real and complex frequencies.

We return to the geometry corresponding to Fig. 10 in which case rc = 0.3 cm,

r0 = 1.8 cm, c = 0.333, d = 1.2 cm, z0 = 1.1 cm, and h0r0 = 10.3. Figure 14

shows how Fig. 10 is modified when an annular electron stream with re = 1.0 cm,

Ie = -2.0 kA, ae = 0.7, and ye = 1.4 is included. Shown in the figure are the

lowest order electromagnetic mode (TM01), beam line and associated space-charge

waves, growth rate, and light line. Only the TM0 1 mode is considered because

it interacts strongest with the slow space-charge wave. It is clear that the

presence of space charge has considerably altered the TM01 mode for k0r0 < 5.5.

The slow space-charge wave merges with the TM0 1 wave to form a single mode in

the region 3.05 k0r0  5.4. In this region the solution to Eq. 62 has a

positive imaginary part indicating instability. The imaginary part of the

frequency (growth rate) is also plotted in Fig. 14. Note that there is also

a damped solution. As the wave number approaches the boundaries of the

unstable region, the growth rate rapidly decreases. The maximum growth rate

occurs where the mode group velocity is positive. Therefore, we expect a for-

ward traveling wave that grows in time. From the figure, the oscillation fre-

quency (u), wave number (k0 ), and growth rate (wc ) of this wave are 6.9 GHz

(1 GHz = 1.0 x 10' s'1), 2.5 cm-1 , and 4.4 x 109 s-1, respectively. It is

clear that the frequency is in the microwave part of the electromagnetic

spectrum. The predicted growth rate indicates a rapidly growing instability,

the associated wave amplitude increases by a factor of 81.4 (=e4"4) every

nanosecond (1 ns = 1 ns = 1.0 x 10-9 s). The slot-to-slot phase difference
in the axial electric field associated with this mode is given by

k0z0 = 2.75 radians (158 deg), very close to 7-mode. The coupling phase veloc-

ity is given by w/k0 
= 0.58c. This phase velocity can be estimated by assum-

ing that the instability occurs near n-mode, in which case the guide wave-

length is 2z0 . Furthermore, the frequency corresponds approximately to a

quarter of a free-space wavelength (xf) in a slot.
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-1

Thus, in 7-mode we expect k0 = 27r/2z 0 = 2.8 cm , xf= 4d = 4.8 cm,

= C/Xf = 6.2 GHz, and w/k0 = 0.47c. The estimated coupling velocity is

19 percent smaller than the exact value, but provides a good indication of

the dominant TM wave-phase velocity and the electron velocity needed for

coupling. The accuracy of the preceding approximation improves with increas-

ing slot depth.

Not shown in Fig. 14 is the point where the slow space-charge wave inter-

sects higher order electromagnetic modes (see Fig. 10). Although instability

occurs at these frequencies, corresponding growth rates are at least an order

of magnitude lower than the dominant mode; hence, these modes are only weakly

present in the MILO.

The instability growth rate is very sensitive to the position of the space-

charge sheath with respect to the anode slots. For example, we decreased

the maximum growth rate in Fig. 14 by a factor of 2.4, to 1.8 x 109 s-1, by
decreasing the electron radius to re = 0.65 cm. This behavior is expected

because the axial electric field associated with the TM01 mode is largest at

the anode slot entrance; therefore, this is the point where an electron

interacts strongest with the field.

The discussion of Fig. 14 ignored the fast space-charge wave. This wave is

in general stable, because waves traveling faster than the electron flow can-

not take energy from it.

According to the above discussion on space-charge waves, we should be able

- to modify the general MILO dispersion diagram (Fig. 14) by changing electron

velocity. Figure 15 confirms this hypothesis, and represents the solution

of Eq. 62 with rc = 0.3 cm, ro = 1.8 cm, E = 0.333, d = 1.2 cm, z0 = 1.1 cm,

h0r0 = 10.3, re = 1.0 cm, Ie = -2.0 kA, Be = 0.85, and Ye = 1.9. Note that

the peak growth rate has decreased by 13 percent from the previous example.

This is to be expected for monoenergetic space-charge flows because it is

difficult to accelerate (decelerate) relativistic electrons in the direction

of (opposite to) their velocity. Since the TM wave energy is supplied by
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electron energy loss via the decelerating axial electric field, we expect

the instability growth rate to decrease with increasing particle velocity.

4,2 COMPARISON WITH NUMERICAL SIMULATION I

Results obtained with the analytic dispersion relation provide a picture of

MILO physics. To determine whether or not this is an accurate picture,

comparisons are made with numerical simulation. The code ISIS (Refs. 23,

24) was used for this purpose.

ISIS is a 2-D, fully electromagnetic, particle-in-cell (PIC) code frequently

used for simulating problems involving the interaction of charged particles

with electromagnetic fields. We use ISIS to simulate the MILO.

Figure 16 is a schematic of the simulation geometry showing cathode, anode,

and corresponding periodic structure. In this case, it is easier to model

the periodic anode with a square wave function. The specific geometrical

parameters are rc = 1.0 cm, A-K gap = 1.0 cm, d (slot depth) = 0.75 cm, and

z0 = 1.4 cm. Experience shows that ten slots are more than adequate for

comparisons with analytic theory. We assume that the analytic theory can

be applied with reasonable accuracy to finite length slow-wave structures

when the structure length is much longer than its period.

To predict the outcome of the simulation, solve Eq. 62 to obtain the dis-

persion diagram corresponding to an electron stream drifting in a MILO whose

geometry corresponds approximately to Fig. 16. The space-charge parameters

are Ie = -7.8 kA, re = 1.5 cm, ae = 0.89, and ye = 2.20. The square-wave

anode is modeled with Eq. A-2 in Appendix A. Figures 17 and 18 represent

dispersion diagrams corresponding to the structure in Fig. 16. Figure 17

is the cold dispersion relation; that is, space charge is not included.

Figure 18 includes the aforementioned electron stream. The effect of square

wave slots (compared with sinusoidal) is to flatten the TM0 1 mode. The

average depth of a sinusoid is less than that of a square wave. Hence, the

latter corresponds to lower frequency.
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Figure 16. Schematic of geometry used in ISIS
MILO simulation.

In Fig. 18, curves labeled A and C are the first two modes shown in Fig. 17.
The curve labeled B is the lowest order space-charge wave. Not shown is the
corresponding fast wave. Curve D represents the growth rate of the insta-
bility that results from the interaction of the TM01 mode (A) with the slow
space-charge wave (B). The most unstable mode has a positive group velocity
(forward wave) and occurs at a frequency v = 6.2 GHz with a growth rate of

Wc = 3.0 x 10 s-1. The associated wave number is k0 = 1.625 and corresponds
approximately to a 2,/3-mode. Thus, the ISIS simulation is expected to show
a very rapidly growing forward-wave instability at a frequency of 6.2 GHz.

In ISIS, the electron flow is generated by space-charge-limited emission
from the cathode. Electron emission is initiated by launching a zero
frequency TEM wave at the left-hand boundary (Fig. 16). Electrons are
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Figure 18. Dispersion relation for TM On waves in ISIS

simulation geometry including space-charge

effects.

emitted when the cathode electric field amplitude reaches a specified

threshold value.

Figure 19 is an ISIS particle plot 2.2 ns of physics time into a MILO simu-

lation. The left-hand boundary is designed to control source impedance.

At the structure midpoint, the electron current and maximum velocity are

1Iel = 7.9 kA and 8e = 0.89, respectively. These agree well with values

used in the analytic theory. Note that the space charge flow is neither

monoenergetic nor annular; ramifications of this are discussed below.

Inspection of Fig. 19 shows that the MILO electron flow has been modulated

by the growing axial electric field. Bunches of charge have formed with an
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52



AFWL-TR-88-103

approximate separation of 3zO. Assuming that this distance also represents

the axial electric field (Ez) wavelength, we estimate the mode to be 27/3,

in good agreement with the analytical estimate.

The axial variation (z dependence) of Ez is shown in Fig. 20, which is a plot

of Ez versus z at a radial position corresponding to the slot entrances at

time t = 2.2 ns. Slot numbers are indicated on the plot. The field amplitude

is increasing with axial distance (z) from the left-hand boundary, character-

istic of a forward-wave instability. In slots 1-4, the field changes sign at

the slot midpoint, The total field in these four slots is dominated by the

zero frequency mode associated with two-conductor systems (discussed above).

In slots 5-10, the oscillatory TM01 axial electric field dominates. Since Fig.

20 is for a fixed time, the exact slot-to-slot phase difference is not obvious.

Nevertheless, the oscillation is clearly in the vicinity of it-mode.

To obtain the instability oscillation frequency, monitor Ez as a function of

time. Figure 21a is a time history of Ez at the midpoint of the entrance to

slot six. The vertical axis is normalized to 511 kV/cm. In agreement with

theory, the instability grows rapidly, saturating in a little more than 2.0 ns.

Saturation is a nonlinear phenomenon that is not modeled in the analytic theory.

The nonlinear state occurred too early in the simulation to enable a reasonable

estimate of the growth rate.

Figure 21b represents the frequency spectrum associated with Fig. 21a. The

dominant frequency is 6.6 GHz, in good agreement with theory. In addition,

higher order modes are either very weak or nonexistent, indicating small

associated growth rates.

Despite the crude space-charge model used in the analytic theory, reasonable

agreement was obtained with the more realistic simulation results. Oscilla-

tion frequency and mode are characteristics of geometry and are not very

sensitive to the electron equilibrium. Thus, the analytic theory is expected

to produce good estimates of these parameters regardless of the space-charge

equilibrium employed. This is not true for predictions of the growth rate.

Analytic theory showed that the growth rate decreased with increasing electron
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amplitude versus Z.
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Figure 21. ISIS MILO simulation: time history and Fourier
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velocity. Although this result is consistent with the physics of monoenergetic

electron flow, it does not agree with what is observed in simulations of

magnetically insulated flow in periodic structures. Numerous ISIS simulations

of the MILO indicate that the instability growth rate is relatively insensi-

tive to transmission line voltage when the latter is above a critical value.

This result is consistent with the physics of magnetic insulation (Sec. 2.1).

Recall that in insulated flow, the electron velocity varies from 0 to some

maximum (Ve). If ve is greater than the structure coupling velocity, a

resonant layer of electrons will always be present, and oscillations will

occur at any voltage. This is exactly the behavior observed in simulations.

Thus, the analytic theory cannot accurately predict growth rate and related

dependencies unless a model of magnetically insulated electron flow is incor-

porated, a task which is accomplished in the following section.

Another reason for changing the analytic physics model is to obtain a dis-

persion equation with wider applicability and which is more efficiently

solved on a computer. The algorithm employed to solve Eq. 62 required evalu-

ating numerous Bessel functions, some having complex arguments, to obtain

the matrix elements. The matrix elements become very large (> 10 6) for geom-
etries with significant radial extent (largest radius > 4.0 cm). Consequently,

the value of the associated matrix determinant is beyond what can be handled

by the root solver, CROOT.

In the following section, a MILO dispersion equation is derived that includes

the physics of magnetically insulated space-charge flow, and can be numeri-

cally solved for geometries with reasonably large radial extent.
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5.0 MILO DISPERSION RELATION FOR RELATIVISTIC BRILLOUIN FLOW

In this section, the MILO dispersion relation is rederived using a kinetic

theory approach. The result corresponds better to reality because most of
the assumptions used in Section 3 have been eliminated. The electron equilib-

rium is modeled with a distribution function that corresponds to relativistic

Brillouin flow (RBF), discussed in Section 2.1. The formalism used here is easily

extended to include nonlaminar electron equilibria. However, in the latter case

not much analytic work can be done because the resulting orbit integral (defined

below) is too complicated. Therefore, we restrict the forthcoming analysis to

RBF.

Using a perturbation of the form given by Eq. 30, an expression for the per-

turbed distribution function, which determines the source functions for

Maxwell's equations, is derived from the relativistic Vlasov equation. An

expression for the perturbed current density is derived and substituted into

the linearized Maxwell's equations to obtain the perturbed fields. Application

of appropriate electric field boundary conditions leads to a dispersion

relation.

Before proceeding with the derivation, we review a few results from the kinetic

theory of plasmas (Ref. 25). Let f(', ', t) represent the distribution of

electrons in phase space where -, 5, and t denote position, momentum, and time,

respectively. In the absence of collisions, f is conserved; therefore, its

total derivative (df/dt) is equal to zero. Because the particle position in

phase space may change with time, the total time derivative operator must be

given by

d a +d d(3
Tt Tt dt ~dt 7(3x

where v- and v- represent the gradient operation with respect to X and ,
x p

respectively. Thus, for collisionless electrons in an electromagnetic field,

conservation of f(+, _, t) implies
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(E + e () -vjf( , P, t)=O (64)

where - has been used for d/dt and d /dt e + ± x B
4. = ). 2 2 1/2

With v = cp/(m2c2 + p2 "2 , Eq. 64 is the relativistically correct Vlasov

equation; its solution describes the evolution of the electron distribution

in phase space. Corresponding number and current densities are given by

n(), t) =fdp f( , p, t) (65)

J(x, t) = -e fdp v f(x, , t) (66)

where the integral is over all of momentum space and dp represents an

infinitesimal volume element in this space.

Any function f depending only on constants of the motion is a solution of

Eq. 64. This fact is used in Appendix B to obtain a distribution function

for RBF.

Let fl represent a perturbation of the distribution function about its

equilibrium f0 such that f = f0 + f1 (If1/f O
I << 1). Similarly, we write

the total electric and magnetic fields as E = E0 + E and B = B0 + B1,

respectively. Substituting these expansions into Eq. 64 and performing

some algebra yields to first order in the perturbed quantities

+ -* - e (E + x B f (x, P, t)

e (E1 + B 1)'v fO(, P, t) (67)

The parameters x, v, and 4 were not expanded because in Eqs. 64 and 67 they

represent corrdinates.

We now obtain an expression for fl(x, P, t) by integrating Eq. 67 over

unperturbed (equilibrium) particle orbits. Let X(t'), V(t-), and P(t-)

58



AFWL-TR-88-103

represent the time-dependent electron position, velocity, and momentum,

respectively, such that at time t- - t, X(t) - , (t) - , and P(t) - _5

That is, at t- - t the particle reaches a point in phase space having coor-

dinates X, _, and t. Evaluated along the unpert'irbed orbit, the left-hand

side of Eq. 67 is the total time derivative of f1 (df1l/dt). Thus, Eq. 67

can be written as

d_t, fl ( x '  p'  to) =  e[ l(x", t-)

( x t" -v V , f t ) (68)

where '"- = '(to), '= -(to), and P(t'). Multiplying Eq. 68 by dt, and

integrating from -= to t yields

t

f 1(x p, t) = e f dt-(El[X(t-), t-]

+ 1c (to) x kl[ (tI), to]).V" fo[X(to), (to), to] (69)

C ). p

To obtain the previous expression, the perturbation was assumed to be non-

existent at t = -cc; therefore, f1(X , p , to = -*) = 0. The integral in

Eq. 69 is sometimes referred to as the orbit integral.

Using the aforementioned linear expansion for f in Eqs. 65 and 66, one can

derive expressions for the perturbed electron and current densities in

terms of f1" To first order we have

n1(X, t) =fcd fl( , P, t) (70)

and

J1(x, t) = -e fd f 1(x, p, t) (71)

for the perturbed number and current densities, respectively.
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The integral in Eq. 69 cannot be evaluated without expressions for fo'

E1 , and B1. Although knowledge of f0 is assumed, the perturbed fields can-

not be determined without first knowing f1 because the latter is used to

obtain the perturbed sources. Therefore, Eqs. 69-71 must be solved self-

consistently with Maxwell's equations.

In most cases, self-consistent analytic expressions for fl, nl, 1 1 and
4.

B1 cannot be obtained because the orbit integral cannot be evaluated. How-

ever, in the case of RBF, analytic solutions are possible, and are used to

derive a more physically accurate dispersion relation (than in Sec. 3) for

the MILO.

The relevant geometry is shown in Fig. 6, and the same assumptions (as in Sec-

tion 3) are made regarding length and azimuthal symmetry. The electron flow

is magnetically insulated and confined to the region rc r< re. An external

guiding field is not needed because the flow is self-insulated. We assume

the electron equilibrium corresponds to RBF; therefore, all electrons move

in laminar orbits with the same constant Hamiltonian (H) and canonical

momentum (P z). A distribution function corresponding to this equilibrium is

given by

f= n(r) 6(H - mc2 + PZ) 6(pr) 6(pe) (72)

where pi represents the ith component of momentum, H = c(p2 + m2c)1/21-e(r),
z

P= -Z eA z (r)/c, rn(r) =A2(mc3 /41re2)(r c/r)A/r 2, A is the constant defined
by Eq. 21, and 0(r) and A z(r) represent the equilibrium electric and mag-
netic potentials, respectively. All equilibrium quantities are defined in

Section 2.1. The development of Eq. 72 with constant of the motion n(r) is

in Appendix B.

Similar to Section 3, we expand all field and charge quantities about the

above equilibrium and look for TMOm modes. Corresponding vacuum equations

are obtained by setting the charge plasma frequency equal to zero. From

Section 3, the linearized Maxwell equations in the space-charge region are

given by
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aEri aE - 1 (73)

az ar c at

aBl aE ri (74)

az c at

and

Sa B 41 1 1 I (75)
r ar 6I = - z+ c at

In Eq. 75, Jz1' is given by the z component of Eq. 71.

Now assume a perturbation of the form given by Eq. 30, and use Eqs. 69-72 to

obtain an expression for the spatial harmonics of J z" Once JZ1 is known,

all perturbed field components can be determined.

Equation 69 can be simplified by noting that f0 depends only on r and pz;

therefore,

f0[(t) f(otj=k- (76)
dp
Z x =x(t-)

where in this case (t-) represents ordinary momentum and is not to be

confused with canonical momentum. By assumption tI = B8 , and because the

electron orbits are laminar, V(t,) = V z(t-) k. Thus, the magnetic force term

in Eq. 69 has no z component, so its dot product with vw. f is identically

zero. Using Eq. 76, Eq. 69 reduces to

t 
afo

fI(X, p, t) = e dt'Ezl[X(t,), t'] aP 1 (77)- i p pP:P(t) (7

Because the orbits are laminar, the electron radial position r is a cQnstant

of the motion. In addition, p' is a constant of the motion because the

system is in equilibrium. Therefore, af0/ap; can be taken outside of the

integral in Eq. 77. The perturbed distribution function can now be written

as
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t
f1 (x, P, t) = e -Ezl( (78)

ap dtE iXti t78
Z D

Substituting an expression in the form of Eq. 30 for E Z into Eq. 78 yields

m t

f1(,f [,tr d~~~ ( t'iexp~i~k Z(t1)-wtil (79)

-m

In Eq. 79, Z(t,) represents the electron trajectory and is determined by

solving

-Z(t') = V [r(t'), t-] (dt,

where Vz [r(t'),t-] = Er0[r(t'),t']/Be 0[r(t'),t'] is the radially dependent

electron drift velocity given in Section 2.1. Because Vz is constant along

any particle orbit, Eq. 80 is readily integrated to give

Z(t-) = z + Vz (t-t)

for the trajectory. To obtain Eq. 81, the condition Z(t'=t) = z was used.

Substituting Eq. 81 into the right-hand side of Eq. 79 yields

f t

fl( , f, t) = e z EzneXp[i(kz - Wt)] fdt-exp[-in(t-t)] (82)

where Sn= w - Vzkn is the velocity shifted frequency. Note that Ezn has

been taken out of the integral in Eq. 82 because, depending only on r, it is

a constant of the motion.

Let I n(t) represent the integral in Eq. 82. Making the transformation

= t" - t gives
0

1n(t) j dr en (83)
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The integral is well behaved if w has a positive complex component. This is

the condition for instability and is satisfied in general when space charge

is present. In this case, the integral is zero at T -,. Thus,

In(t) l M (84)

where 2n (t) =w - v zkn . We have redefined 2n to reflect the fact that,

because the electron velocity is evaluated at t- = t, it must now be inter-

preted as a coordinate in phase space. Substituting Eq. 84 into Eq. 82

yields

1 t) = -f=. Ezn exp[i(kn z - wt)] (85)

Using Eqs. 71, 72 and 85, we can derive an expression for the perturbed

current density. Substituting Eq. 85 for f1 into the z component of Eq. 71

yields

(r, t) = -ie Ez I*(fO) exp[i(knz - wt)] (86)JZlr t) = - zn n nz-w)
n=_M

where

1*(fo) CD f dp dp dPr (wVzk) a (87)

n 0 (-zkn)
_CD _M -Cc

In Eq. 87, sn has been written explicitly to show its dependence on vz.

Integrating Eq. 87 using Eq. 72 for fo is quite tedious; details are in

Appendix C. Substituting the result into Eq. 86 yields

zi (r, t) = iA
2  M 

- t) A g(r)

x Ow EzneXp[i(knZ - wt)] (8
n=-- [(w/c - k )m2c4 + (w/c + kn)g 2(r)]2

where g(r) = e (r) + mc2 - eAz(r). Equation 88 can be simplified considerably

using expressions corresponding to RBF in Section 2.1. Note that for

P = ln[(r/c)A], [cosh(p) - sinh(p)] =(rc/r)A = g(r)/mc2 . The denominator in

the summation of Eq. 88 can be rewritten as
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m~ce{ 8 2[ g2(r) kn~ I m- 9 2 2

c + ] - -[1 2 c 4 2(89)

Substituting the above hyperbolic expression for g(r) into Eq. 89 and per-

forming some algebra yields

4m4C8[cosh(p) - sinh(p)] 2[j cosh(p) - kn sinh(P)] 2  (90)

Rewriting Eq. 88 with r-dependent functions replaced by their hyperbolic

counterparts and multiplying numerator and denominator by 1/cosh(p), after

some cancellation gives

Sr,t) = i A I nEznexp[i(knZ-Wt)] (91)
r cosh2(n) . kn tanh(P

Using definitions of wp, YO and vzo given in Section 2.1, Eq. 91 simplifies

to

dz(r,t) _ in -£ exp[i(k Z-wt)] (92)4YO n=-. n

Equation 92 is the form of the perturbed current density when the system in

Fig. 6, with electron flow equilibrium given by Eq. 72, experiences a linear

perturbation in the form of Eq. 30. This result is used to derive the per-

turbed field harmonics.

Substituting expressions corresponding to Eq. 30 for Erl, EzI, Bel and

JZ1 into Eqs. 73 and 74 yields identically Eqs. 31-33 for the spatial har-

monics. Thus, Eqs. 33, 40 and 41 remain valid, provided the J zn are defined

by Eq. 92. Similar to Section 3, Eqs. 30, 92 and 41 are used to eliminate

Jzn and B en from Eq. 33. After some algebra, the resulting equation is

r + rn)Ezn = 0 (93)
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where

2
rn =r 2 21-Wp/o(94)

an 2£ =  2/C2 -2
and r W - kn . Expression 94 is a complicated function of r because
W =p p(r), yo = yo(r ) ' and On = On(r)= w-Vz(r)k . Definitions of w p(r),

Yo(r), and Vz(r) are given by Eqs. 16, 9 and 10, respectively. The appro-

priate vacuum equation is obtained by letting wp = 0 in Eq. 94. Solving

Eq. 93 in regions I and II of Fig. 6, subject to the condition in Eq. 58

with boundary condition E zn(r=rc) = 0, yields all allowed electromagnetic

and space-charge modes.

Note that Eq. 93 can be derived from the Maxwell-fluid equations (Eqs. 25-29

in Section 3) for an arbitrary electron equilibrium assuming negligible

transverse particle motion. Therefore, this assumption also applies to

Eq. 93. Conditions under which the perturbed transverse motion can be

neglected will occur when the space-charge equilibrium is devoid of large

radially directed gradients in the density or in the velocity field. To

first order, the perturbed charge density and velocity are given by nI =

6r an0/ar and v zI = Ar avzo/ar, where n0 and vzo are equilibrium values,

and Ar represents a radial displacement of a sheet of charge. If an0/ar and

Vzo /ar are large, nI and vzl will produce significant drifts in the trans-

verse direction via the production of Erl and Be1 field components. The

resulting drift is due to a combination of equilibrium and perturbed fields.

Confining the present analysis to small radial gradients in the equilibrium

is not too restrictive because, in the linear regime, the longitudinal inter-

action is so strong that it will be the dominant effect. However, by ignoring

transverse effects, we have excluded the smooth-bore magnetron instability

from the theory, the subject of which is adequately addressed in Ref. 26.

Because of the relative complexity of RBF equilibrium, Eq. 93 cannot be

solved analytically in the region containing space charge. In the next sec-

tion, we numerically solve Eq. 93 subject to the condition in Eq. 58 for the

geometry corresponding to Fig. 6 and a variety of space-charge parameters.
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6.0 NUMERICAL SOLUTION OF THE MILO DISPERSION RELATION FOR RBF EQUILIBRIUM

The general MILO dispersion relation, for any electron equilibrium, consists

of Eq. 62 subject to condition 58. Expression 58 defines the matrix elements

Dmn(w, k ) once the solution for the spatial harmonics of the axial electric

field are known. The latter are determined by the choice of electron

equilibrium.

In this section, we obtain dispersion relation solutions that include the

physics of magnetically insulated electron flow, and make comparisons with

numerical simulation. The procedure is similar to Section 5.0 except that the

axial electric field spatial harmonics are determined by numerically solving

Eq. 93 in regions I and II of Fig. 6. In region I, the space-charge param-

eters yo, VzO and w are given by expressions 9, 10 and 16, respectively.
P

In region II, there is no space charge, so wp = 0.0. Using appropriate

definitions of wp, Eq. 93 is numerically solved continuously out to the

corrugated anode wall to obtain Ezn[ra(z)]. This is part of an iterative

process that continues until the roots of Eq. 62 are obtained.

The periodic structure dispersion code DISCODE was used, with appropriate

modifications, to obtain solutions of Eq. 62 that include magnetically insu-

lated electron flow. DISCODE was modified to solve Eq. 93 in place of evalu-

ating the analytic solution obtained in Section 3. This is accomplished with

the well-kn,'wn Fehlberg Fourth-Fifth Order Runge-Kutta method (Ref. 27).

Because the Ezn may be complex valued, Eq. 93 represents a coupled pair of

second-order differential equations. To facilitate the use of the above ODE

solver, Eq. 93 is rewritten as a coupled system of four first-order differ-

ential equations. To determine the Dmn(w , ko) , make the substitution Ezn(r)

= An f n(r) in Eqs. 58 and 93, and numerically solve for f n(r). It is sufficient

to evaluate the f n(r) to within an arbitrary constant. Any n-dependent constant

can be incorporated into the An. Therefore, the initial value of df n/dr is

arbitrary. Hence, the initial condition E zn(r c) = 0 in addition to expression

58 are sufficient to determine f n(r) and corresponding roots of Eq. 62.
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Velocity shear associated with RBF considerably complicates the numerical

solution of Eq. 93. Recall that in Eq. 93 Q n = W-v zokn' Because vzO varies

from 0 at the cathode to some maximum (ve) at the charge sheath radius (r e),

we see that on can be zero for a wide range of real w for a given kn; there-

fore, Qn= 0 corresponds to singularities of Eq. 93. Appendix D shows that

these singularities are actually branch points which define a continuum of

slow space-charge waves. Thus, the general dispersion relation is expected

to consist of a continuous spectrum of slow space-charge waves with frequen-

cies in the range 0 < w < vzok O , a single fast space-charge wave, and an

infinite number of TM modes. It will be shown that the entire space-charge

wave continuum is unstable, and that the relative insensitivity of growth

rate to changes in MILO voltage is due to velocity shear in the electron flow.

6.1 DISPERSION RELATION SOLUTIONS INCLUDING THE EFFECTS OF RBF

We illustrate the effect of magnetically insulated flow on the MILO dispersion

relation with several examples in which dispersion diagrams are obtained using

DISCODE to solve Eqs. 62 and 93. Cases without space charge were covered in

Section 4.0; hence, the following discussion is limited to problems containing

insulated electron flow.

To gain an understanding of the space-charge wave spectrum without complica-

tions related to slow TM waves, we obtain the dispersion diagram correspond-

ing to magnetically insulated electron flow in an infinitely long coaxial

transmission line with rc = 6.5 cm, ra = 9.1 cm, V0 = 0.6 MV, and Ia = 59.0 kA.

Corresponding space-charge parameters are re = 8.0 cm, Ie = -19.7 kA,

Be = 0.745, and ye 
= 1.5. We obtained these values by specifying the electron

sheath radius (r e) and maximum electron velocity (e ), and using appropriate

equations in Section 2.1 to evaluate remaining parameters. Figure 22 repre-

sents the dispersion diagram corresponding to the previous parameter set.

Only the space-charge wave spectrum is shown. Not shown is the spectrum of

standard coaxial TM On waves. As pointed out above, the space-charge wave

spectrum consists of a single fast mode plus a continuum. The dispersion

diagram can be modified, as described in Section 4.0, by changing electron

flow parameters. The continuum can be broadened or narrowed by changing Bes
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Figure 22. Dispersion diagram for space-charge waves
associated with RBF.
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but it is always present. When a slow-wave structure is added to the above

configuration, instability is expected where the space-charge wave continuum

crosses a slow electromagnetic mode.

Equation A-1 is used to add a sinusoidally rippled anode to the previous

configuration. The slow wave structure parameters are rc = 6.5 cm, r0 = 9.1

cm, e = 0.098901, d = 1.8 cm, and z0 = 1.4 cm. Electron flow parameters are

the same as above, but the MILO voltage has been changed to V0 = 0.32 MV.

Figure 23 represents the dispersion diagram corresponding to this configura-

tion and is a plot of oscillation frequency v (not normalized) versus normal-

ized wave number. The slow space-charge wave continuum occupies the region

defined by 0 < 2rv/k 0 < BeC. Instability occurs where the continuum crosses

a slow TM mode. The squares labeled A, B, and C in Fig. 23 mark the frequency

and wave number of maximum growth corresponding to the first three TM modes.

The oscillation frequencies v and maximum normalized growth rates Wc (=w ro/c)

of these points are shown in Table 1.

TABLE 1. Oscillation frequency and maximum growth
rate of unstable TM modes in Fig. 23.

Mode v (GHz) Wc

A 4.1 0.48

B 8.9 0.04

C 12.6 0.09

Clearly, mode A is dominant, followed by C and B. The forward wave inter-

actions are strongest because the flow of energy is in the forward direction.

For a given MILO voltage, growth rates decrease rapidly for points either

side of the wave number yielding maximum growth, similar to Figs. 14 and 15.

Except for the space-charge wave continuum, the addition of magnetically insu-

lated flow does not appear to have significantly modified the MILO dispersion

diagram. For a fixed value of ae results are similar to those obtained in

Section 4. However, a major difference in computed growth rates becomes

evident when a e is varied.
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Figure 23. MILO dispersion diagram including the physics of
RBF.
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Table 2 summarizes the results of a parameter study that shows the sensitivity

of growth rate to changes in electron sheath radius and, more importantly,

MILO voltage. The periodic structure was generated with Eq. A-i. Corres-

ponding parameters are rc = 1.0 cm, r0 =2.9 cm, e = 0.301345, d = 1.8 cm,

and z0 = 1.4 cm. Values of space-charge parameters are given in the table.

TABLE 2. Dependence of growth rate on electron radius and
MILO voltage.

Electron Maximum MILO Normalized ,
Radius (cm) Velocity (ae ) Voltage (MV) Growth Rate (wC)

1.5 0.585 0.3 0.017
1.5 0.929 2.4 0.096
1.5 0.989 9.5 0.094
1.9 0.585 0.2 0.111
1.9 0.929 1.0 0.219
1.9 0.989 3.7 0.182

The data in Table 2 are divided into two groups determined by the value of re.

Within each group the MILO voltage and corresponding maximum electron velocity

take on a wide range of values. Consistent with the results in Section 4.0, the

position of the electron radius has a significant effect on growth rate. In

contrast to the monoenergetic beam case (compare Figs. 14 and 15), the maximum

growth rate does not significantly decrease with increasing voltage. In fact,

the growth rate increases to a maximum value, then decreases very slowly with

increasing voltage. This is the expected behavior, and is due entirely to the

velocity shear present in magnetically insulated flow. Because of velocity

shear, there will always be a resonant layer of electrons to interact with the

fundamental TM mode, so long as ae is above the value necessary to produce

forward waves (dw/dk0 > 0).

6.2 COMPARISON WITH NUMERICAL SIMULATION II

Since a realistic model of electron flow has been incorporated into the

analytic theory, more meaningful comparisons with numerical simulation can be

made. The results represented by Fig. 23 were compared with an ISIS simulation
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of the corresponding geometry; and in this case, we were able to simulate

the sinusoidally rippled anode. The simulation procedure is identical to that

described in Section 4.2.

Figure 24a is a plot of simulation particles (electrons) on the MILO geometry

corresponding to Fig. 23, and represents a snapshot taken 2.2 ns into the

simulation. Recall that rc = 6.5 cm, A-K gap = 1.7 cm, d = 1.8 cm, and

z0 = 1.4 cm. The electron flow is approximately in equilibrium because the

perturbed electric field amplitude is still very small. From Fig. 24a, the

electron sheath radius is estimated to be re = 8.0 cm. Note that the electron

flow near the anode slots is approximately laminar. Knowing re, we estimate

Ye using Fig. 24b, which is a plot of particle kinetic energy (normalized to

mec 2 ) versus radius. Using re = 8.0 cm, we obtain ye = 1.5. Additional rele-

vant simulation parameters are V0 = 0.47 MV, Ia = 55.4 kA, and Ie = -30.8 kA.

The simulation equilibrium agrees very well with the insulated flow used to

obtain Fig. 23. The electron current is 50 percent higher in the simulation,

but does not have a significant effect on the results.

Similar to Section 4.2, the time history of the axial electric field is moni-

tored to observe the evolution of the instability. Figures 25a and 25b

respectively represent the time history and corresponding spectrum of the

axial electric field at the midpoint of the entrance to slot three in Fig. 24a

(counting from left to right). Figure 25a shows that the instability is in the

linear regime, growing exponentially in time. Assuming Ez=exp(wct), we esti-

mate that wc = 5.3 x 10a x-1 (w* = 0.16) for the total growth rate. Compari-

son with mode A in Table 1 indicates a factor of 3 difference in the analytic

prediction. This difference may be due to: (1) slightly nonlaminar electron

orbits observed in the simulation, (2) the fact that the analytic model ignores

first-order transverse motion of electrons, or (3) a combination of these

effects.

Figure 25b shows the frequencies of the first three electromagnetic modes

(TM0 1 - TM03) to be vA = 4.4 GHz, vB = 9.0 GHz, and vC = 12.9 GHz. Comparison

with Table 1 shows that these frequency values are in excellent agreement with

analytic theory. In addition, the relative amplitude of modes observed in the
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Figure 24. ISIS MILO simulation results showing details
of electron flow.
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Figure 25. ISIS MILO simulation results showing details
of the axial electric field spectrum.
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spectrum qualitatively agrees with the growth rates given in Table 1; that

is, in the simulation we observe the order of dominance predicted by theory.

In general, the analytic theory including RBF equilibrium provides a very

good description of the linear regime in MILO simulations. With a relatively

simple model, we can predict oscillation frequency, growth rate, relative

mode strength, mode of oscillation, and sensitivities to various parameters.
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7.0 CONCLUSIONS

Using Maxwell's equations and Floquet's theorem for periodic structures, we

derived a dispersion relation for transverse magnetic (TM) waves propagating

in a coaxial, magnetically insulated transmission line oscillator (MILO).

The dispersion relation, Eqs. 58 and 62, is written in terms of the axial

electric field space harmonics [Ezn(r)d evaluated on the periodic anode

surface. All space-charge effects are contained in the differential equation

for the E (r).

Modeling the electron flow with a thin, monoenergetic electron beam allowed

us to obtain analytic solutions to the axial electric field differential

equation. Using analytic expressions for the E zn(r), we numerically solved

the dispersion relation for the purpose of obtaining dispersion diagrams cor-

responding to various MILO geometries and thin beam parameters. The dispersion

diagrams accurately show the presence of slow TM waves, fast TM waves, and

space-charge waves. In addition, they clearly indicate that microwaves gen-

erated in the MILO are the result of an unstable interaction involving slow

TM modes with slow space-charge waves.

The thin-beam dispersion relation accurately predicts MILO mode structure,

oscillation frequency, and mode of oscillation. However, it fails to predict

the dependence of growth rate on MILO voltage observed in numerical simulation.

Growth rates predicted with the thin-beam dispersion relation rapidly decrease

with increasing MILO voltage, a consequence of using monoenergetic electron

flow. Numerical simulations of the MILO, which accurately model magnetically

insulated flow, show little variation in the growth rate over a wide range of

transmission line voltages. The difference in theory and simulation is attrib-

uted to using a thin, monoenergetic electron beam to approximate magnetically

insulated flow.

In an attempt to eliminate the discrepancy between theory and simulation, the

thin-beam dispersion relation was modified to include a realistic model of

magnetically insulated electrol flow. In this model, known as relativistic

Brillouin flow (RBF), electrons drift in a sheath along equipotential lines.
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An important feature of RBF is velocity shear. The velocity of electrons in

the flow varies from zero at the cathode to some maximum value at the edge

of the charge sheath.

Incorporating RBF into the dispersion relation did not modify the MILO TM

mode structure; however, it had a significant effect on space-charge modes.

The single slow space-charge wave associated with monoenergetic beams was

replaced with a continuum of slow space-charge waves, a result of the velocity

distribution in RBF. Numerical solutions of the dispersion relation including

RBF showed the entire space-charge wave continuum to be unstable. Furthermore,

it was shown that the peak growth rate was insensitive to MILO voltage as long

as the corresponding maximum electron velocity remained above the threshold

for a forward wave interaction. This result agrees with numerical simulation,

and is a consequence of velocity shear present in magnetically insulated flow.

The dispersion relation including the physics of RBF was used to make accurate

predictions of MILO behavior, as confirmed by numerical simulation, and repre-

sents the main result of this work.
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APPENDIX A

PERIODIC ANODE FUNCTIONS USED IN MILO STABILITY ANALYSIS

The following is a list of functions used to model the periodic anode in MILO

devices.

1. SINUSOIDAL

The anode wall function is given by

ra(z) = ro[l + E cos(hoz)]  (A-I)

where h0= 
2Tr/z0 and z0 represents the structure period. The minimum, maxi-

mum, and average radii are given by ro(1-E), ro(l+e), and ro, respectively.

The slot depth d is given by d = 2r0 E and is obviously determined by the

parameter E for a given rO. Depicted in Fig. A-i, the anode modeled by Eq.

A-1 has equal slot and vane widths.

2. SQUARE WAVE

To avoid complications related to the Gibbs phenomenon (Ref. A-i), we do not

model a square wave using Fourier series, but instead use the function

ra(z) = r I + E tanh [tan2m (1 hoz)] 1  (A-2)

where m = 1, 2, 3, ..., and h0 is as before. Expression A-2 has period z0

and models a square wave to any degree desired by choosing an appropriate

value of m; typically, m = 4 is adequate. This yields a square wave anode

wall with equal vane and slot widths. The slot depth d is given by d = ro(l+:).

Figure A-2 is an example- of a structure generated by Eq. A-2.

3. DOUBLE HYPERBOLIC TANGENT

The double hyperbolic tangent function is the most versatile of functions pre-

sented here. It can be used to model periodic anodes having slot widths equal
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Figure A-1. Sinusoidal model of a MILO.
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Figure A-2. Square-wave model of a MILO.
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to or different than vane widths. The primary part of this function is

given by

f(z) = n tanh Ia sin2[4 ho(z-zs)]l tanh) a cos2[1 ho(z-zs)]I (A-3)

where n = d/tanh 2(a/2) is a normalization factor, d is the slot depth, zs is

a constant that shifts the function relative to the origin, a is a constant
used to shape the anode, and h0 is as before. The function f(z) has period

zO. Anodes with wide slots and narrow vanes can be modeled by setting

zs = z0/2 in Eq. A-3 and letting

ra(z) = r0 - d/2 + f(z) (A-4)

where r0 is the average anode radius. Then, choosing a > 1 will cause the
slots to be wider than vanes, illustrated in Fig. A-3(a).

The opposite case of narrow slots and wide vanes is obtained by choosing

zs = 0 in Eq. A-3 and setting

ra( z) = r0 + d/2 - f(z) (A-5)

with r0 defined as before. Choosing a > 1 causes vanes to be wider than

slots, illustrated in Fig. A-3(b).

Equal slot and vane widths can be obtained using either Eq. A-4 or A-5 with

a = 1.
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r ra(Z)

r CATHODE

(a) Slots wider than vanes.

ra(Z)

r CATHODE

(b) Vanes wider than slots.

Figure A-3. Double hyperbolic tangent model of a MILO.
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APPENDIX B

EQUILIBRIUM DISTRIBUTION FUNCTION FOR RELATIVISTIC BRILLOUIN FLOW (RBF)

A distribution function corresponding to RBF is arrived at by considering the

inherent physics assumptions involved. Noting that any function depending

only on constants of the motion is a solution to Vlasov's equation, we guess

the form of a distribution function to within an arbitrary normalization con-

stant. The arbitrary constant is determined by forcing RBF expressions for

the electric and magnetic potentials to solve Maxwell's equations with source

terms determined by taking moments of the distribution function.

As was pointed out in Section 2.1, RBF is one-dimensional and is characterized

by the assumption that all electrons have the same constant Hamiltonian (H)

and canonical momentum (P z). Furthermore, it is assumed that Pz = 0 for all

electrons in the flow. Based on these assumptions, we guess that the form

of the equilibrium distribution function (f0 ), in cylindrical coordinates,

must be

fo(r, n) = n(r) 6(H - mc2 + Pz) 6(pr ) 6(pe) (B-I)

where 6 represents the Dirac delta-function, Pi the ith component ofnormliztio costat, = ~m2 2 2 1/

ordinary momentum, n(r) is a normalization constant, H = c(m2C +p) /2-e(r),

P = ymV - eA (r), and y = 1/(I-v 2/c2 )1/2 The relativistically correct
z z z z

expression for vz is given by

Vz = 2 cpz 2 1/2 (B-2)

(ic + p )

The functions 4(r) and A z(r) respectively represent the radially dependent

equilibrium electric and magnetic potentials defined in Section 2.1. Note

that because the flow is laminar any function of r is a constant of the

motion.

Expression (B-I) represents any equilibrium satisfying the above condition.

We now determine n(r) such that (B-i) corresponds to RBF. This requires that

expressions for 0(r) and Az (r) given in Section 2.1 satisfy
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id d
rd_ r L O(r) = -4rp(r) (B-3)

1 d r LA (r) 4 z(r) (B-4)
rdr dr z c Z

with source terms given by

p(r) = -eJ I fdpzdpedPr fo(.r, ) (B-5)

CO -, -00

and

jz(r) = -e - - - dpzdpedPr vz fo(r, ) (B-6)

Equations B-3 and B-4 are the equilibrium Maxwell's equations for the M:TL

problem discussed in Section 2.1.

The mechanics of evaluating the integrals in Eqs. B-5 and B-6 are similar;

therefore, we present details of obtaining p(r) and simply write down the

expression for Jz (r).

Before proceeding, we define

g(r) = eo(r) + mc2 - eAz (r) (B-)

and

F(pc) = c 2c2 + p2)1 - cpz - g(r) (B-8)

where we have left the r dependence of F implicit.
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Substituting Eq. B-i into B-5 and performing the integrals over pr and p8

yields

p(r) = -en(r) dpz 6[F(pz] (B-9)

Evaluation of the previous integral is complicated by the fact that the argu-

ment of the delta-function is a function rather than a variable. This diffi-

culty is overcome using the relation (Ref. B-i)

[F (pz) ]  6(Pz'PzO)
dF (B-iC)

I , IdP 
z

where pzO is the solution to F(pzO) = 0. Setting the right-hand side of Eq.

B-8 equal to zero yields, after some algebra,

C zO + m2 c2)1/2 = cpzO + g(r) (B-1i)

Squaring the previous equation and solving for 2cpz0 yields

- m2 cW -_ 2(r) (B-12)
2CPzO g(r)

Using Eq. B-10 in expression B-9 yields

p(r) - e (r) (B-13)dF
IdPz Pz= PzO

where

d_ F cp~
dpz  L c p2 + m2c2)1/2 ]

We evaluate Eq. B-14 at Pz = PzO and eliminate pzO from the resulting

expression using Eqs. B-11 and B-12 to get
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dF 2cg2(r) (B-15)d__p 2 4 g2

z pz=pzo m c + g (r)

Substituting Eq. B-15 into Eq. B-13 yields

p(r) - en(r) [m2c4+ .i2(r)l (B-16)

2c - (r)

for the total charge density.

The procedure for evaluating the current density integral is identical

to the one used for p(r); omitting the details gives the following

expression for the equilibrium current density

(r) - en(r) m2C4 r2(r)2 ( g2(r)( - 7

With n(r) known, Eqs. B-3 and B-4 could be solved using source terms given

by B-16 and B-17 to obtain the equilibrium potentials. The object here,

though, is to determine n(r) such that it corresponds to RBF equilibrium.

Thus, we uniquely determine n(r) by substituting the expression for (r),

Eq. 11, and source term B-16 into Eq. B-3; performing the differentiation

and solving for n(r) yields

n(r) mc3  A 2 g2(r)/m2c 4
72  Kr! + g2 (r)/m 2 c4  cos

Writing g(r) in terms of the hyperbolic expressions for O(r) and A z(r)

(Section 2.1), g(r)/mc2  = (r/r) A . Thus,

9 2(r)/m_c 4 (rc/r) 2A (rc/r)A

1 + g2 (r)/m 2c I + (rc/r)2A 2 cosh n(r/rc)A

Using Eq. B-19 in B-18 produces the desired result
(TO, /)2 (rc)

n(r) ( - (A-)2e(rC F (B-2C)
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Expression B-I with normalization constant n(r) given by Eq. B-20 represents

the distribution function for RBF, and can be used to determine all proper-

ties of the equilibrium.
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APPENDIX C

EVALUATION OF THE PERTURBED CURRENT DENSITY INTEGRAL I*(fno0

In this section, we are concerned with evaluating integrals of the form

vz  af0In(f) f f f ze dP (w-vzkn) ~ (C-i)

when f0 is given by Eq. 72. The velocity vz in Eq. C-I must be considered

as a function of pz" The relativistically correct relationship is given

by Eq. B-2.

Expression C-I can be cast into a form that is easily evaluated by the

method given in Appendix B. We define g(r) and F(p z) as in Eqs. B-7 and

B-8, respectively. Noting that

a In( -Vzk n )  = (C-2)kn n  (-Vz k n )

we rewrite Eq. C-I as

Ikn J f f dpzdpodp ln(w-v zkn)az (C-3)n 0 k n f z 8r zn apz
00 -0w -00

Using the definition of vz given by Eq. B-2, we integrate Eq. C-3 by parts

to get

I * f ln(w-vzkn) c

m~3  
co o o

m k-- f f J dp dp dpr G(pz' kn) f (C-4)

-ow -co -

where

k
G(Pz k n) = 2 + m2c2)I / 2 _ nck (p2 + m2c2) (C-5)

The first term on the right-hand side of Eq. C-4 is zero because we do

not allow electrons with infinite momentum; that is, f = _w) = 0.
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Substituting Eq. 72 for f0 into Eq. C-4 and performing the integrals over

Pr and pe yields

I*(f M 2c3 n(r) d G(Pz k (C-6)
nO 0 akJ~ fZ n' I LPZJ c6

where n(r) is given by Eq. B-20. Using Eq. B-1O, the integral in Eq. C-5 is

easily evaluated giving

in(fO) = - m2c3 n(r) a G(Pz, k (C-7)
dF 0 1 p I kk n (-IdP z IPz Pzo

with PzO given by Eq. B-12. Differentiating G(pzO , kn) with -espect to kn

yields

3( G( kn) 2 2 2)1/2 22 22)1/2 (C-8)kn  Pzo'PzO + 2 kn z0 Z + M c2  / C8

Substituting Eq. C-8 and the absolute value of Eq. B-14 into Eq. C-7

yields

I*([ + c m2 c2Wn(r) (C-9)

n : 2 0 M2c21/2 _ PO]2[(P2 +m2C2 1/2- (

Using Eqs. B-11 and B-12, C-9 can be rewritten as

= - 4m2c3rn(r)g(r) (C-10)
n 0' [(w/c - kn)m 2c4 + (w/c + kn)g2(r)]2

Substitution of Eq. C-10, with n(r) given by Eq. B-20, into Eq. 86

yields Eq. 88 for the perturbed current density.
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APPENDIX D

ANALYSIS OF SOLUTIONS TO EQUATION 93 ABOUT SINGULAR POINTS

This section shows that solutions to Eq. 93 in the space-charge region

remain finite at singular points, and that these singularities are actually

branch points of the associated dispersion relation. In addition, the

relationship between branch points and the space-charge wave continuum is

discussed.

Equation 93 can be simplified considerably by transforming to the coor-

dinate p defined in Section 2.1 as

p = In r)](0-1)

Then,

i d Ad 2 e-2p/A d2

r d Ezn = e d E (-2)

Substituting Eq. D-2 and Eqs. 94, 9, 10 and 16 into Eq. 93 yields

Id 2 + 2 [ r ) cI 2

+ r [ 2e2P/A - fn(P)I Ezn = 0 (D-3)

where

f () _ sech 2(p) (D-4)
n [w/c - k ntanh(p)] 2

and

2 W 2/C2 k2
n c -k (n-5)
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Equation D-3 has no singular points when w is complex, and is therefore

well behaved in the case of instability. However, when w is real, singu-

larities occur at points pO given by

P O = arctanh (--n) (0-6)

The real frequency solutions to the dispersion relation determine the

behavior of space-charge waves away from unstable points on the dispersion

diagram. Hence, we investigate solutions to Eq. D-3 at the singular points.

In Eq. D-3, we make the transformation p = po+Z where z << 1, and expand

the coefficient of E zn in a Taylor series about the point z = 0. To second

order in z, we have

fn(PO+Z) :- - + _I . .+ (D-7)

and

e 2(po+z)/A e 2pO/AI + z + +)2 + (D-8)

For z approximately zeru, the behavior of solutions to Eq. D-3 will be

dominated by terms of order less than one (in z) in the above series

expansions. Thus, ignoring all higher order terms, Eq. 0-3 transforms to

d2+ [ + Kt E = 0 (D-9)dz 2  z2

where K1 = I and K2 = (rnr 0/A)
2 _ 1/3. The constant r0 is defined by Eq. D-1

with p = PO.

The exact solution to Eq. D-9 is given by Ref. D-1

Ezn = i (K 2z) + B Y11312 (K2z)] (D-10)

where J and Y represent Bessel's functions of the first and second kind,

respectively.
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We are interested in the behavior of Eq. D-10 as z goes to zero. For

small arguments, the Bessel functions can be written as(Ref. D-2)

Ji 3 / 2 (k 2 z) 2 2) i3/2-11)
r(1+i/3/2) -)

and

7r '2 (0!K2
Y 'K~z) 2 2zi)

where r represents the gamma function. Any quantity raised to a power can

be written in terms of an exponential. Thus,

(K2z)±iV
3/2 = e±(/3/2)ln(K 2z) (D-13)

Clearly, as z approaches zero,Eq. D-13 oscillates rapidly, but remains

bounded in the process. It follows that, in the limit as z goes to zero in

Eq. D-10, the Bessel functions remain bounded and, because of the z 1/2

factor, the solution approaches zero. Thus, Eq. 0-10 is a valid solution

for E zn near singular points in the space-charge region.

The singularities are manifest in the derivative of Eq. D-10 with respect

to z. Because of the z1/2 dependence, the derivative of Eq. D-10 with

respect to z diverges as z approaches zero. The singular points (pO) are

actually branch points (Ref. D-3), and represent branch points of the dis-

persion relation (Ref. 10).

The existence of a space-charge wave continuum depends on the electron

velocity distribution and not on the presence of a slow wave structure.

Hence, to establish the frequency range in which branch points occur, we

set n=O in Eq. D-4. Then, the solutions to

- k0vzo(r) = 0 (D-14)
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determine the singular points. The r-dependent electron velocity is given

by(Eq. 10, Section 2.1)

v zo (r) = tanh[A ln(r/rc)] (D-15)

Because vzO varies from 0 to ve (maximum electron velocity), the real

frequency range in which branch points occur is 0 < w < k0ve. In this

range, there exists a continuum of solutions in the form of Eq. D-10 that

are associated with slow space-charge waves. The continuum becomes unstable

where it crosses a slow electromagnetic mode.
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